Probing energetics of Abeta fibril elongation by molecular dynamics simulations.

نویسندگان

  • Takako Takeda
  • Dmitri K Klimov
چکیده

Using replica exchange molecular dynamics simulations and an all-atom implicit solvent model, we probed the energetics of Abeta(10-40) fibril growth. The analysis of the interactions between incoming Abeta peptides and the fibril led us to two conclusions. First, considerable variations in fibril binding propensities are observed along the Abeta sequence. The peptides in the fibril and those binding to its edge interact primarily through their N-termini. Therefore, the mutations affecting the Abeta positions 10-23 are expected to have the largest impact on fibril elongation compared with those occurring in the C-terminus and turn. Second, we performed weak perturbations of the binding free energy landscape by scanning partial deletions of side-chain interactions at various Abeta sequence positions. The results imply that strong side-chain interactions--in particular, hydrophobic contacts--impede fibril growth by favoring disordered docking of incoming peptides. Therefore, fibril elongation may be promoted by moderate reduction of Abeta hydrophobicity. The comparison with available experimental data is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulations of Alzheimer Abeta40 elongation and lateral association.

Amyloid-beta (Abeta) peptides can elongate in the fibril axis and associate in the lateral direction. We present detailed atomic Abeta models with different in-register intermolecular beta-sheet-beta-sheet associations. We probe structural stability, conformational dynamics, and association force of Abeta oligomers with various sizes and structures for both wild-type and mutated sequences using...

متن کامل

Molecular dynamics simulations of anti-aggregation effect of ibuprofen.

Using implicit solvent molecular dynamics and replica exchange simulations, we study the impact of ibuprofen on the growth of wild-type Abeta fibrils. We show that binding of ibuprofen to Abeta destabilizes the interactions between incoming peptides and the fibril. As a result, ibuprofen interference modifies the free energy landscape of fibril growth and reduces the free energy gain of Abeta p...

متن کامل

Fibril Elongation by Aβ17–42: Kinetic Network Analysis of Hybrid-Resolution Molecular Dynamics Simulations

A critical step of β-amyloid fibril formation is fibril elongation in which amyloid-β monomers undergo structural transitions to fibrillar structures upon their binding to fibril tips. The atomic detail of the structural transitions remains poorly understood. Computational characterization of the structural transitions is limited so far to short Aβ segments (5-10 aa) owing to the long time scal...

متن کامل

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

New insights into the mechanism of Alzheimer amyloid-beta fibrillogenesis inhibition by N-methylated peptides.

Alzheimer's disease is a debilitating neurodegenerative disorder associated with the abnormal self-assembly of amyloid-beta (Abeta) peptides into fibrillar species. N-methylated peptides homologous to the central hydrophobic core of the Abeta peptide are potent inhibitors of this aggregation process. In this work, we use fully atomistic molecular dynamics simulations to study the interactions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 96 11  شماره 

صفحات  -

تاریخ انتشار 2009